Topic: Check of ACS on stability by the second method of Lyapunov

Example: Investigate on stability by the second (direct) method of Lyapunov the linearized (linear) ACS which description is set in the state-space:

$$
\left\{\begin{array}{l}
\dot{x_{1}}=-6 x_{1}+2 x_{2} \\
\dot{x_{2}}=-5 x_{1}+3 x_{2}
\end{array}\right.
$$

Lyapunov's function is given as follows:

$$
V(x)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)
$$

You should give geometrical interpretation.

Algorithm and solution

1. We will be convinced that the given function $V(x)$ is one of fixed positivesign, i.e.

$$
\left\{\begin{array}{l}
V(x)>0 \text { if } x \neq 0 \\
V(x)=0 \text { if } x=0
\end{array}\right.
$$

2. It is necessary to define the sign of its full derivative:

$$
\begin{gathered}
\frac{d V}{d t}=\frac{\partial V}{\partial x_{1}} \frac{d x_{1}}{d t}+\frac{\partial V}{\partial x_{2}} \frac{d x_{2}}{d t} \\
\frac{d V}{d t}=x_{1} \quad x_{1}^{\prime}+x_{2} \quad x_{2}^{\prime}
\end{gathered}
$$

3. We substitute the given system dynamic equations:

$$
\begin{aligned}
& \frac{d V}{d t}=x_{1} \dot{x}_{1}+x_{2} \dot{x}_{2}=x_{1}\left(-6 x_{1}+2 x_{2}\right)+x_{2}\left(-5 x_{1}+3 x_{2}\right)= \\
& =-6 x_{1}^{2}+2 x_{1} x_{2}-5 x_{1} x_{2}+3 x_{2}^{2}
\end{aligned}
$$

4. It is necessary for asymptotic stability of a system that the full derivative of

$$
\begin{aligned}
& \frac{d V}{d t}=-6 x_{1}^{2}+2 x_{1} x_{2}-5 x_{1} x_{2}+3 x_{2}^{2}<0 \\
& -6 x_{1}^{2} \neq 0 \Rightarrow \frac{-6 x_{1}^{2}}{-6 x_{1}^{2}}-\frac{3 x_{1} x_{2}}{-6 x_{1}^{2}}+\frac{3 x_{2}^{2}}{-6 x_{1}^{2}}<0 .
\end{aligned}
$$

5. We will designate $\frac{x_{2}}{x_{1}}=z$; let's rewrite inequality in new designations and we will solve it:

$$
\begin{gathered}
-\frac{1}{2} z^{2}+\frac{1}{2} z+1<0 ; \quad(\text { multiply }(-2)) \\
z^{2}-z-2=0 \\
z_{1,2}=\frac{1}{2} \pm \sqrt{\frac{1}{4}+2} \\
z_{1,2}=\frac{1}{2} \pm \frac{3}{2} ; \quad z_{1}=-1, z_{2}=2
\end{gathered}
$$

6. Hence, the system asymptotically is steady across Lyapunov when choosing values of variables in the received range $x_{2} \in\left(-x_{1}, 2 x_{1}\right)$.

Conclusion: the following condition asymptotically of the steady movement of the researched dynamic system is found the second method of Lyapunov $x_{2} \in\left(-x_{1}, 2 x_{1}\right)$.

Geometrical interpretation:

Fig. - The movement of system is asymptotically steady

Task Investigate on stability by the second (direct) method of Lyapunov the linearized (linear) ACS which description is set in the state-space (on variants); Lyapunov's function is given as follows:

$$
V(x)=1 / 2\left(x_{1}^{2}+x_{2}^{2}\right)
$$

And you should give geometrical interpretation.
Variants:
1)

$$
\left\{\begin{array}{c}
x_{1}^{\prime}=-x_{1}+3 x_{2} \\
x^{\prime}{ }_{2}=2 x_{1}-x_{2}
\end{array}\right.
$$

2)

$$
\left\{\begin{array}{c}
x_{1}^{\prime}{ }_{1}=-5 x_{1}-3 x_{2} \\
x_{2}^{\prime}=4 x_{1}+7 x_{2}
\end{array}\right.
$$

3)

$$
\left\{\begin{aligned}
x_{1}^{\prime} & =-2 x_{1}+2 x_{2} \\
x_{2}^{\prime} & =-7 x_{1}+3 x_{2}
\end{aligned}\right.
$$

4)

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=3 x_{1}-7 x_{2} \\
x_{2}^{\prime}=5 x_{1}-2 x_{2}
\end{array}\right.
$$

5)

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=-2 x_{1}+2 x_{2} \\
x^{\prime}{ }_{2}=-7 x_{1}+3 x_{2}
\end{array}\right.
$$

6)

$$
\left\{\begin{array}{c}
x_{1}^{\prime}=3 x_{1}-3 x_{2} \\
x_{2}^{\prime}=x_{1}-x_{2}
\end{array}\right.
$$

7)

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=5 x_{1}+3 x_{2} \\
x_{2}^{\prime}=-x_{1}-3 x_{2}
\end{array}\right.
$$

8)

$$
\left\{\begin{array}{c}
x_{1}^{\prime}{ }_{1}=-8 x_{1}+4 x_{2} \\
x_{2}^{\prime}=2 x_{1}+5 x_{2}
\end{array}\right.
$$

9)

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=-6 x_{1}-x_{2} \\
x_{2}^{\prime}=-x_{1}+4 x_{2}
\end{array}\right.
$$

10)

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=-6 x_{1}-9 x_{2} \\
x^{\prime}{ }_{2}=-5 x_{1}-8 x_{2}
\end{array}\right.
$$

11)

$$
\left\{\begin{array}{c}
x_{1}^{\prime}=5 x_{1}-6 x_{2} \\
x_{2}^{\prime}=-4 x_{1}-8 x_{2}
\end{array}\right.
$$

12)

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=2 x_{1}-7 x_{2} \\
x_{2}^{\prime}=4 x_{1}-9 x_{2}
\end{array}\right.
$$

